
PROGRESSIVE SOLUTIONS TO FSM EQUATIONS

Khaled El-Fakih1 and Nina Yevtushenko2

1Verimag, University Joseph Fourier (France), American University of Sharjah (UAE)

2∗Tomsk State University (Russia)
elfakih@imag.fr , yevtushenko@elefot.tsu.ru

Abstract. The equation solving problem is to derive the behavior of the
unknown component X knowing the joint behavior of the other components (or
the context) C and the specification of the overall system S. The component X
can be derived by solving the Finite State Machine (FSM) equation C ◊ X ∼ S,
where ◊ is the parallel composition operator and ∼ is the trace equivalence or
the trace reduction relation. A solution X to an FSM equation is called
progressive if for every external input sequence the composition C ◊ X does not
fall into a livelock without an exit. In this paper, we formally define the notion
of a progressive solution to a parallel FSM equation and present an algorithm
that derives a largest progressive solution (if a progressive solution exists). In
addition, we generalize the work to a system of FSM equations. Application
examples are provided.

1. Introduction

The equation solving problem can be formulated as solving an equation C ◊
X ∼ S, where ◊ is a composition operator and ∼ is a conformance relation.
Usually the behavior of X, S, and A, is represented using finite state models
such as finite state automata, I/O automata, Labeled Transition Systems
(LTSs), and Finite Sate Machines (FSMs) [for references, see, for example, 1,
2]. The conformance relation ∼ often is the trace equivalence relation, denoted
≅, or the trace containment (or reduction) relation, denoted ≤, and the
composition operator is either the synchronous • or the parallel ◊ composition
operator. The applications of the equation solving problem were considered in
the context of the design of communication protocols and protocol converters,
selection of test cases, and the design of controllers for discrete event systems.

If an equation has a solution, then it is known to have a largest solution that
includes all other solutions [3]. However, not every solution of a largest
solution is of a practical use. Usually, we are interested in so-called
progressive solutions [3, 4] where for every external input sequence the
composition C ◊ X does not fall into a livelock without an exit. If an automata

∗ The second author acknowledges the support of RFBR-NSC grant 06-08-89500

2 Khaled El-Fakih1 and Nina Yevtushenko2

equation has a progressive solution then the equation is known to have a
largest progressive solution [1] that contains all progressive solutions.
However, not each solution of a largest progressive solution is progressive.
The problem of deriving and characterizing progressive solutions has been
studied for I/O automata, finite automata, and for FSMs over the synchronous
composition operator.

In the first part of this paper, we first, define the notion of a progressive
solution for the FSM equation C ◊ X ≅ S and for the FSM inequality C ◊ X ≤ S
[2, 3]. Given, possibly non-deterministic, FSMs context C and specification S,
we present an algorithm that provides a largest complete progressive FSM
solution to the equation C ◊ X ≅ S (inequality C ◊ X ≤ S) if the equation (the
inequality) has a progressive solution. A largest progressive solution is
derived by trimming a proper largest solution. We note that the results [2]
obtained for deriving a progressive solution in the area of finite automata
cannot be directly applied for deriving a progressive solution over FSMs,
since, by definition, a progressive solution to an FSM equation can block
output actions allowed by the specification. Moreover, in this paper, we
propose a simpler algorithm for deriving a largest progressive solution than
that for automata equations [1]. In addition, the results obtained for deriving a
progressive solution of an FSM equation over the synchronous composition
operator [4] cannot be directly applied for deriving a progressive solution over
the parallel composition operator, since the notions of the parallel and
synchronous composition operators are different; the parallel composition
operator allows to produce an external output not directly after external input
but, possibly after a sequence of internal actions.

In some application areas, given a finite set of k > 1 contexts C i and service
specifications S i , one is interested in finding a solution (the unknown
component) X that combined with Ci meets the specification Si, for i = 1, ..., k.
The problem of finding such a solution X is the problem of solving a system of
equations. A largest solution to a system of FSM equations can be derived as
given in [5]. In the second part of this paper, we deal with a progressive
solution to a system of FSM equations. A largest progressive solution to the
system of equations is derived by intersecting largest progressive solutions of
every equation and then by deriving the largest submachine of this
intersection that is progressive for every equation.

2. Preliminaries

Finite State Machine (FSMs): A FSM, or machine hereafter, is a quintuple
A = 〈S, I, O,TA, s0〉, where S is a finite nonempty set of states with the initial
state s0, I and O are input and output alphabets, and TA ⊆ S ×I ×O× S is a

PROGRESSIVE SOLUTIONS TO FSM EQUATIONS 3

transition relation. In this paper, we consider only observable FSMs, i.e. for
each triple (s,i,o)∈S×I×O there exists at most one state n∈S such that
(s,i,n,o)∈T. An FSM A is called complete, if ∀s ∈ S and ∀i ∈ I ∃o∈O and
∃s '∈ S, such that (s, i,o, s ')∈TA. If A is not complete, then it is called partial.
An FSM A is called deterministic, if ∀ s ∈ S and ∀ i∈I there exist at most one
pair of output o and state s ', such that (s, i,o, s ')∈TA. An FSM
B = (Q ,I ,O,TB,q0) is a sub-machine of A if Q ⊆ S and TB ⊆ TA. The
largest complete submachine of FSM A can be obtained by iterative deleting
states where the behavior of the FSM is not defined at least for a single input.
Each complete sub-machine of A is a submachine of the largest complete sub-
machine of A (if it exists). As usual, the transition relation TA of FSM A =
〈S, I, O,TA, s0〉 can be extended to sequences over the alphabet I. In this paper,
we consider only initially connected FSMs, i.e., each state of an FSM is
reachable from the initial state.

Given an FSM A, the set of all I/O sequences generated at state s of A is
called the language of A generated at state s, or simply the set of I/O
sequences at s, written Ls(A). The language, generated by the FSM A at the
initial state is called the language of the FSM A and is denoted by L(A), for
short. The FSM 〈{ t 0}, I, O, T, t 0〉, denoted MAX(I,O), where T =
{ t0} ×I×O×{ t 0}, is called maximum over the input alphabet I and the output
alphabet O. The maximum machine MAX(I,O) accepts the language (IO)*. An
FSM B = 〈Q, I, O, TB, q0〉 is a reduction of FSM A = 〈S, I, O, TA , s0〉, written
A ≤ B, if LB ⊆ LA. If LB = LA then FSMs A and B are equivalent. For complete
deterministic FSMs the reduction and the equivalence relations coincide.

The common behavior of two FSMs can be described by the intersection of
these machines. The intersection A ∩ B of FSMs A=〈S, I, O, TA, s0〉 and
B=〈Q, I, O, TB, q0〉 is the largest connected sub-machine of the FSM
〈S × Q, I, O, TA ∩B, s0q0〉. Formally, TA ∩B = {(sq, i, o, s'q') | (s, i, o, s ') ∈
TA ∧ (q, i, o, q ') ∈ TB}. The language of A ∩ B is the intersection L(A) ∩
L(B). The intersection of two observable FSMs is an observable FSM;
however, the intersection of complete FSMs can be partial. FSM languages
are regular, and thus, the underlying model for an FSM is a finite automaton.
When solving a parallel equation an FSM is represented by an automaton by
unfolding each transition of the FSM [2 - 4].

 Automata and FSMs: A finite automaton, is a quintuple S
= 〈S, V, δ S, s0, FS〉, where S is a finite nonempty set of states with the initial
state s0 and a subset FS of final (or accepting) states, V is an alphabet of
actions, and δ S ⊆ S ×V × S is a transition relation. An automaton
〈S', V, δ 'S, s'0, F'S〉 is a submachine of the automaton S if S' ⊆ S, δ 'S ⊆ δ S, and
F'S ⊆ FS. The automaton S is deterministic, if ∀ s ∈ S and ∀ v∈V, ∃ at most
one state s ', such that (s, v, s ') ∈ δ S. The language L(S) generated or

4 Khaled El-Fakih1 and Nina Yevtushenko2

accepted by S is known to be regular. Given a sequence α ∈V * and an
alphabet W, a W-restriction of α, written α ↓W, is obtained by deleting from α
all symbols that belong to the set V \ W. Given a sequence α ∈V * and an
alphabet W, a W-expansion of α, written α ↑W, is a set that contains each
sequence over alphabet (V ∪ W) with the V–projection α.

Well-known results state that regular languages are closed under the union,
intersection, complementation, restriction and expansion and the constructions
for deriving corresponding automata could be found, for example, in [1, 3, 6].
Let P = 〈P, V, δ P, p 0, FP〉 be an automaton which accepts the language L.
Restriction (↓): Given a non-empty subset U of V, the automaton P↓U that
accepts the language L↓U over U is obtained by replacing each edge (s,a,s′) in

P by the edge (s,ε,s′).1 Expansion (↑): Given alphabet U, the automaton P↑U
that accepts the language L↑U over U ∪ V is obtained by adding (s,a,s) ∀a
∈ U\V for each state s of P.

We note that not each automaton has an FSM language. However, it is
known that given an automaton B over alphabet I ∪ O, I ∩ O = ∅, there
exists a largest subset of the language of the automaton B that is the language
of an FSM, denoted BFSM, which can be constructed by intersecting B with
(IO)* and deleting all non-accepting states from the resulting automaton,
which have an incoming transition labeled with an output action o. The
language of an FSM C over input I and output O is a subset of the language of
an automaton B if and only if C is a reduction of BFSM [3].

Parallel Composition of FSMs: Consider a system of two complete
communicating FSMs A = 〈A, I1∪V, O1∪U, TA, s0〉 and B = 〈T, I2∪U, O2∪V,
TB, t0〉 [1 - 3]. As usual, for the sake of simplicity, we assume that alphabets I1,
V, O1, U, I2, O2 are pair-wise disjoint. The alphabet Extin = I1 ∪ I2 represents
the external inputs of the composition, while the alphabet Extout ⊆ O1 ∪ O2
represents the external outputs of the composition; Ext = Extin ∪ Extout, Int =
U∪V. The two FSMs communicate under a single message in transit, i.e., the
next external input is submitted to the system only after it produced an
external output to the previous input. The collective behavior of the two
communicating FSMs can be described by an FSM. The parallel composition
of FSMs A and B, denoted C ◊Ext B or simply C ◊ B, can be obtained as
follows [2, 3]: First, for FSMS A and B, the corresponding automata Aut(A)
and Aut(B) are derived. Then, the intersection

2 2 1 1
(() ())

I O I O Ext
Aut A Aut B↑ ∪ ↑ ∪ ↓∩ ∩ Aut(MAX(I,O)) is converted into an

FSM. It is known that the parallel composition of two complete FSMs can be
partial, since the communicating FSMs can fall into an infinite dialogue (live-

1 Apply the closure procedure to obtain an equivalent deterministic automaton without ε-moves

[6].

PROGRESSIVE SOLUTIONS TO FSM EQUATIONS 5

lock) without producing an external output. In this case, the projection of

2 2 1 1
(() ())

I O I O Ext
Aut A Aut B↑ ∪ ↑ ∪ ↓∩ onto I does not coincide with I*. Formally,

the composition falls into live-lock if
2 2 1 1

() () ((,)
I O I O Int

Aut A Aut B Aut MAX I O↑ ∪ ↑ ∪ ↑∩ ∩

has a state where the generated language is empty.
FSM Equations: Let C = (C , I1∪V, O1∪U, TC, c0) and

S = (S , Extin, Extout, TS, s0) be two complete FSMs. An expression

"C ◊Ext X ≅ S" ("C ◊Ext X ≤ S") is called an FSM equation (an FSM inequality)
w.r.t. the unknown X that represents an FSM over the input alphabet I2 ∪ U, I2

= Extin\I1, and the output alphabet O2 ∪ V, O2 = Extout\O1. The FSM C is
usually called the context, and the FSM S is usually called the specification.
As usual, an FSM equation can have no solution while an FSM inequality is
always solvable, as the trivial FSM with the language that contains only the
empty sequence always is a solution to an FSM inequality. If an FSM
inequality and a solvable FSM equation have a complete solution then they
are known to have a largest complete solution [2, 3]. A largest complete
solution M to the equation C ◊Ext X ≅ S can be obtained as the largest complete
submachine of the FSM over input alphabet I2∪U and output alphabet O2∪V
which corresponds to the automaton Λ(C,S,MAX) =

2 2 2 2
(() ())U VI O I O U V
Aut C Aut S ↑ ∪↑ ∪ ↓ ∪ ∪ ∪

∩ ∩ Aut(MAX(I2∪U,O2∪V)), if such a

complete submachine exists. We note that in this paper, we do not merge
equivalent states (for the reasons shown later) of the automaton Λ(C,S,MAX)
when applying the closure procedure for deriving an equivalent deterministic
automaton without ε-moves after the restriction operator. If such a machine M
does not exist the equation and the inequality have no complete solutions. If
the machine M exists then M is a largest complete solution to the inequality
C ◊Ext X ≤ S. Moreover, each reduction of M also is a solution to the
inequality. If the composition C ◊Ext M is equivalent to S [2] then M is a
largest complete solution to the equation. If the composition C ◊Ext M is not
equivalent to S, then the equation has no complete solution. However, not
each complete reduction of M is a solution to the equation.

As an example of a largest complete solution of an FSM equation, consider
the specification FSM S1 with transitions (1,x,o3,1)(1,i,o1,1) (1,x,o2,1) and the
context C shown in Fig. 1. The context C is defined over external inputs I1 =
{ i}, external outputs O1 = {o1, o2, o3}, internal inputs V = {v1, v2, v3} and
internal outputs U = {u1, u2}. Specification S1 is defined over external inputs
Extin = {i, x} and external outputs Extout = {o1, o2, o3}. A solution to an FSM
equation C ◊Ext X ≅ S1 is defined over the external input alphabet I2 = {x}, the
internal input alphabet U = {u1, u2} and the internal output alphabet V = {v1,
v2, v3}. A largest complete solution to the equation is shown in Fig. 2.

6 Khaled El-Fakih1 and Nina Yevtushenko2

Fig. 1. Context FSM C

Fig. 2. A largest complete solution to C ◊Ext X ≅ S1

3. Progressive Solutions to FSM Equations

Consider an FSM equation C ◊ X ≅ S, where C and S are FSMs over
input alphabets I1∪V and I1∪I2 and over output alphabets O1∪U and O1∪O2
correspondingly, while X is the unknown FSM over input alphabet I2∪U and
output alphabet O2∪V. A solution Prog to an FSM equation C ◊ X ≅ S (or
inequality) is progressive if the system C ◊ Prog cannot fall into a live-lock
under any external input sequence, i.e., for each external input action of an
input sequence the composition eventually produces an external output.
Formally, a solution Prog to an FSM equation C ◊ X ≅ S (or to inequality
C ◊ X ≤ S) is progressive if Prog is a complete FSM and the intersection
Aut(C)↑(I2∪O2)∩Aut(Prog)↑(I1∪O1)∩ Aut(MAX(I,O))↑U∪V has no states where the
empty language is generated. The definition of a progressive solution requires
that the above intersection has no cycles over internal actions without an exit
from the cycle with an external output. If we consider a deterministic context
FSM then each complete deterministic solution to the equation is progressive.

As an example of a non-progressive solution, consider a largest complete
FSM solution Largest, shown in Fig. 2. At the initial states 1 of context C
(Fig. 1) and H of Largest, if the external input i is applied to the context, FSM
C produces the internal output u1. In response to the input u1, the FSM Largest
may produce the output v3, and then the system C ◊ Largest falls into a
livelock. This is due to the fact that states (9,L,B) and (10,M,B) of the
intersection shown in Fig. 3 are non-progressive. The O-restriction of the
language generated at these states is empty.

PROGRESSIVE SOLUTIONS TO FSM EQUATIONS 7

Fig. 3. The intersection Aut(C)↑(I2∪O2)∩Aut(Largest)↑(I1∪O1)∩Aut(MAX(I,O))↑U∪V

In the following, we identify a property of a solution Sol to an FSM
equation such that a largest progressive reduction of Sol can be derived as an
appropriate submachine of Sol. In particular, the largest complete submachine
of an FSM corresponding to the automaton Λ(C,S,MAX) (without merging
equivalent states) possesses this property.

A solution P = (P , I2∪U, O2∪V, TP, p0) to an FSM inequality C ◊Ext X ≤ S
is called perfect in the context C (or simply perfect) if for each state (c,p,t0) of
the intersection Aut(C)↑(I2∪O2)∩Aut(P)↑(I1∪O1)∩ Aut(MAX(I,O))↑U∪V that has an
incoming transition labeled with an action a ∈ O2∪V, the (I2∪O2∪U∪V)-
projection of the language accepted at state (c,p,t0) equals to the set of I/O
sequences which take the FSM P from the initial state to state p.

Given a solution F to the inequality, an equivalent perfect solution can be
obtained by splitting states of F [4]. However, if we do not merge equivalent
states when deriving the automaton Λ(C,S,MAX) then the largest complete
submachine M of an FSM corresponding to the automaton (if it exists) is
perfect w.r.t. the context C. However, if the obtained FSM M is not reduced
then the reduced form of M does not generally possess the property.

Theorem 1: Given an FSM equation C ◊ X ≅ S (inequality C ◊ X ≤ S), the
largest complete submachine M of an FSM corresponding to the automaton
Λ(C,S,MAX) (without merging equivalent states) is a perfect solution (w.r.t.
the context C) to the inequality C ◊Ext X ≤ S. �

Theorem 2: Let P be a perfect solution (w.r.t. the context C) to the
inequality C ◊ X ≤ S. 1. Every complete submachine Psub of P is perfect. 2.
A complete intersection of P and some FSM is perfect. �

Algorithm 1. Deriving a largest complete progressive solution to an
FSM equation (inequality)

Input: Observable FSMs C and S .
Output: A largest progressive solution to C ◊ X ≅ S (if it exists).
Step-1. Derive the largest complete submachine M of the FSM

corresponding to the automaton Λ(C,S,MAX). If M does not exist or M is not a
solution to the equation, then the equation has no complete solution. End
Algorithm 1. Otherwise, construct the intersection
Aut(C)↑I2∪O2 ∩ Aut(M)↑I1∪O1 ∩ Aut(MAX(I,O))↑Int and Go-to Step-2.

8 Khaled El-Fakih1 and Nina Yevtushenko2

Step-2. If there is no triplet in the intersection where the language generated
at the triplet is empty and there is no accepting triplet (c,m,t) where at least
one transition under an external input is undefined, then Go-to Step-4.
Otherwise; Go-to Step-3.

Step-3. Iteratively delete from the intersection every triplet (c,m,t) where
the external restriction of language generated at the triplet is empty and each
accepting triplet (c,m,t) where at least one transition under an external input is
undefined.

- If the initial state of the intersection is deleted then there is no progressive
solution. End Algorithm 1. Otherwise,

- For each deleted triplet (c,m,t), delete state m from the FSM M and
iteratively delete from M states where at least one input is undefined.

 If the initial state of M is deleted then there is no progressive solution. End
Algorithm 1. When a state m is deleted from the FSM M each triplet
(c,m,t) is deleted from the intersection. If the initial state of the
intersection is deleted then there is no progressive complete solution. End
Algorithm 1. Otherwise, Go-to Step-2.

Step-4. If C ◊ M ≅ S then M is a largest progressive solution. End Algorithm

1. If C ◊ M � S then there is no progressive solution. End Algorithm 1. �
Theorem 3: If the equation C ◊ X ≅ S has a progressive solution then

Algorithm 1 returns a largest progressive solution. �
As an example, consider a largest solution M shown in Fig. 2. In order to

derive a largest progressive solution to the equation, at Step-2, derive the
intersection in Fig. 3. Let Aut(F) denote the obtained intersection. State
(10,M,B) of Aut(F) is non-progressive, i.e., delete this state from Aut(F) and
correspondingly delete state M from Aut(M). Furthermore, state (9,L,B) is also
non-progressive, i.e., delete this state from the automaton and correspondingly
delete state L from Aut(M). The remaining states of the obtained automaton
are all progressive. End Algorithm 1. The FSM corresponding to the resulting
automaton Aut(M) is a submachine of the FSM in Fig. 2 without state L, and
this FSM is a largest complete progressive solution to the equation.

4. A System of FSM Equations

Given an integer k>1, complete context FSMs C i = (C i , I1∪V, O1∪U,
TCi, c i 0), specifications S i = (S i , Extin, Extout, TSi , s i 0), k > 1, and a system

of equations Ci ◊Ext X ≅ Si, i = 1, ..., k. An FSM X over the input alphabet
Extin\I1 ∪ U and over the output alphabet Extout\O1 ∪ V is a solution to the
system if it is a solution to each equation, i.e., Ci ◊Ext X ≅ Si, i = 1, ..., k.

PROGRESSIVE SOLUTIONS TO FSM EQUATIONS 9

If a system of FSM equations has a complete solution then the system has a
largest complete solution. A complete solution to the system Ci ◊Ext X ≅ Si, i =
1, ..., k, is called a largest complete solution if it includes all complete
solutions as reductions. A largest complete solution M to a system of
equations Ci ◊Ext X ≅ Si can be obtained similar to that in [5]. Given a system
of equations Ci ◊Ext X ≅ Si, i = 1, ..., k, a solution B to the system is called
progressive if it is a progressive solution to every equation of the system. In
general, the intersection of two largest progressive solutions to two equations
not necessary is a progressive solution to the system of two equations.

Algorithm 2. Deriving a largest progressive solution to a system of FSM
equations

Input: Observable FSMs C i and S i , i = 1, ..., k.
Output: A largest progressive solution over the input alphabet I2∪U and

output alphabet O2∪V to the system Ci ◊Ext X ≅ Si, i = 1, ...,k (if a progressive
solution exists).

Step-1: For i = 1, …, k, call Algorithm 1 and obtain a largest progressive
solution Mi to the equation Ci ◊Ext X ≅ Si. If for some i = 1, ..., k, there is no
progressive solution to the equation Ci ◊Ext X ≅ Si, then there is no progressive
solution to the system of equations, End Algorithm 2. Else; Go-to Step-2.

Step-2: Derive the largest complete submachine F of the intersection ∩ Mi.
If the intersection has no complete submachine, then there is no progressive
solution to the system of equations, End Algorithm 2. Else, Go-to Step-3.1.

Step-3.1) If F is a progressive solution to each equation, then F is a largest
progressive solution to the system of equations. End Algorithm 2. Else, Go-to
Step-3.2.

Step-3.2) For every j ∈ 1, ..., k such that F is not a progressive solution to
an equation Cj ◊Ext X ≅ Sj, assign M = F, construct the intersection
Aut(Cj)↑I2∪O2 ∩ Aut(M)↑I1∪O1 ∩ Aut(MAX(I,O))↑Int and call Steps 2 and 3 of
Algorithm 1 in order to derive a largest complete submachine Fj of F that is a
progressive solution to the equation. If at least for one equation there is no
such submachine then the system of equations has no progressive solution;
END Algorithm 2. Else, assign Mj: = Fj and Go-to Step-2. �

Theorem 4: If a system of equations Ci ◊Ext X ≅ Si, i = 1, ..., k, has a
progressive solution then Algorithm 2 returns a largest progressive solution. �

As an example, consider the specification S1 [with (1,x,o3,1)(1,i,o1,1)
(1,x,o2,1)] and the context C1 which is that of Fig. 1 where the output label o3
of the transition (9,v1,o3,1) is changed to o1. Moreover, consider the
specification S2 with a single state 1 and transitions (1,x,o3,1)(1,i,o1,1)
(1,x,o3,1). Consider also, the context C2 shown in Fig. 4 and the system of two
equations C1 ◊Ext X ≅ S1 and C2 ◊Ext X ≅ S2. For each of these equations, at
Step-1 of Algorithm 2, apply Algorithm 1 and obtain the largest complete
progressive solutions LP1 and LP2. The intersection of these solutions is

10 Khaled El-Fakih1 and Nina Yevtushenko2

shown in Fig. 5. The corresponding FSM F is not a progressive solution to the
equation C1 ◊Ext X ≅ S1, since states (9,LS,B), (10,MW,B), and (9,LT,B) of
the intersection in Fig. 6 are non-progressive. Correspondingly, in Step-3.2, in
order to derive a largest complete submachine of F that is a progressive
solution to the equation C1 ◊Ext X ≅ S1, derive the intersection in Fig. 6 and
apply Steps 2 and 3 of Algorithm 1. States (9,LS,B), (10,MW,B) and (9,LT,B)
of the intersection are non-progressive, thus, delete states LS, MW, and LT
from Aut(F). The obtained automaton Aut(F) is that of Fig. 5 without deleted
states LS, MW, and LT and its corresponding FSM is a complete progressive
solution to the system of two equations.

Fig. 4. Context C2

Fig. 5. The intersection Aut(F)

Fig. 6. The intersection Aut(C1)↑(I2∪O2) ∩ Aut(F)↑(I1∪O1) ∩ Aut(MAX(I,O))↑Int=U∪V

References

1. El-Fakih, K., Yevtushenko, N., Buffalov, S., Bochmann, G.: Progressive Solutions to a
Parallel Automata Equation. Theoretical Computer Science. 362, 17--32 (2006)

2. Petrenko, A., Yevtushenko, N.: Solving Asynchronous Equations. In: Formal Description
Techniques and Protocol Specification, Testing, and Verification, pp. 231--247 (1998)

3. Yevtushenko, N., Villa, T., Brayton, R., Petrenko, A.,Sangiovanni-Vincentelli, A.: Solution
of Parallel Language Equations for Logic Synthesis. In: ICCAD, pp. 103--110 (2001)

4. Yevtushenko, N., Villa, T., Brayton, R., Petrenko, A., Sangiovanni-Vincentelli, A:
Compositionally Progressive Solutions of Synchronous FSM Equations. Discrete Event
Dynamic Systems. 18(1): 51--89 (2008)

5. Yevtushenko, N., Zharikova, S., Vetrova, M.: Multi Component Digital Circuit
Optimization by Solving FSM Equations. In: Euromicro Symposium on Digital System
Design, IEEE Computer society, pp. 62--68 (2003)

6. Hopcroft J., Ullman, J.: Introduction to automata theory, Languages, and Computation.
Addison-Wesley (1979)

