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Abstract. The equation solving problem is to derive the behavior of the
unknown componerX knowing the joint behavior of the other compongpois
the context)C and the specification of the overall syst@nirhe componenx
can be derived by solving the Finite State Macl{fFeM) equatiorC ¢ X OS
where¢ is the parallel composition operator ands the trace equivalence or
the trace reduction relation. A solutiod to an FSM equation is called
progressive if for every external input sequence the compasi@ ¢ X does not
fall into a livelock without an exit. In this papeve formally define the notion
of a progressive solution to a parallel FSM equeaaod present an algorithm
that derives a largest progressive solution (if@gpessive solution exists). In
addition, we generalize the work to a system of F&ations. Application
examples are provided.

1. Introduction

The equation solving problem can be formulatedohsrgy an equatiol© ¢
X OS where¢ is a composition operator amdis a conformance relation.
Usually the behavior oK, S andA, is represented using finite state models
such as finite state automata, I/O automata, Ldbdlensition Systems
(LTSs), and Finite Sate Machines (FSMs) [for refees, see, for example, 1,
2]. The conformance relatidioften is the trace equivalence relation, denoted
[0 or the trace containment (or reduction) relatiolenoted<, and the
composition operator is either the synchronowos the paralled composition
operator. The applications of the equation solyirgblem were considered in
the context of the design of communication prote@sid protocol converters,
selection of test cases, and the design of coeteolbr discrete event systems.

If an equation has a solution, then it is knowawe a largest solution that
includes all other solutions [3]. However, not gveolution of a largest
solution is of a practical use. Usually, we areeliasted in so-called
progressive solutions [3, 4] where for every external input sequence the
compositionC ¢ X does not fall into a livelock without an exit.dh automata
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equation has a progressive solution then the aemuasi known to have a
largest progressive solution [1] that contains ptbgressive solutions.
However, not each solution of a largest progressolation is progressive.
The problem of deriving and characterizing progsessolutions has been
studied for I/O automata, finite automata, andA8Ms over the synchronous
composition operator.

In the first part of this paper, we first, definfgetnotion of a progressive
solution for the FSM equatidd ¢ X JSand for the FSM inequalit§ ¢ X< S
[2, 3]. Given, possibly hon-deterministic, FSMs tat C and specificatiors,
we present an algorithm that provides a largestpbet® progressive FSM
solution to the equatio@ ¢ X O S (inequalityC ¢ X < §) if the equation (the
inequality) has a progressive solution. A largesbgpessive solution is
derived by trimming a proper largest solution. Waenthat the results [2]
obtained for deriving a progressive solution in drea of finite automata
cannot be directly applied for deriving a progresssolution over FSMs,
since, by definition, a progressive solution to M equation can block
output actions allowed by the specification. Mommvin this paper, we
propose a simpler algorithm for deriving a largesigressive solution than
that for automata equations [1]. In addition, tesults obtained for deriving a
progressive solution of an FSM equation over theckyonous composition
operator [4] cannot be directly applied for deriyim progressive solution over
the parallel composition operator, since the natiaf the parallel and
synchronous composition operators are differeng; plarallel composition
operator allows to produce an external output tivetctly after external input
but, possibly after a sequence of internal actions.

In some application areas, given a finite set Bfl context<C; and service
specifications S;, one is interested in finding a solution (the umkn
component)X that combined witlC; meets the specificatid®, fori =1, ...,k
The problem of finding such a solutidtis the problem of solving system of
equations. A largest solution to a system of FSM equatioas lse derived as
given in [5]. In the second part of this paper, @aal with a progressive
solution to a system of FSM equations. A largesgpessive solution to the
system of equations is derived by intersectingdstrgrogressive solutions of
every equation and then by deriving the largestmgmdhine of this
intersection that is progressive for every equation

2. Preliminaries

Finite State Machine (FSMs): A FSM, ormachine hereafter, is a quintuple
A=(S 1, 0,Ta S, WhereS s a finite nonempty set of states with the ihitia
states,, | and O are input and output alphabets, andd SxI xOx S is a
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transition relation. In this paper, we consideryoobservable FSMs, i.e. for
each triple $i,0)00SxIxO there exists at most one statélS such that
(s,i,n,0)JT. An FSM A is calledcomplete, if s S and Ui 01 [bJO and
[5'0 S such thatg, i,0, s)Ta. If Ais not complete, then it is callgdrtial.
An FSMA is calleddeterministic, if 0 s[J SandO il there exist at most one
pair of output o and states', such that gi,0,s)0T». An FSM

B = (Q,1,0,Ts,q,) is a sub-machine oA if Q O S and Tg U Ta. The
largest complete submachine of FSM A can be obtained by iterative deleting
states where the behavior of the FSM is not defatddast for a single input.
Each complete sub-machineAfs a submachine of the largest complete sub-
machine ofA (if it exists). As usual, the transition relatidl of FSM A =

(§ 1, O,Ta, S can be extended to sequences over the alphadbethis paper,
we consider only initially connected FSMs, i.e.cleastate of an FSM is
reachable from the initial state.

Given an FSMA, the set of all I/O sequences generated at stafeA is
called thelanguage of A generated at state s, or simply the set of I/O
sequences &, written Ly(A). The language, generated by the FBMt the
initial state is called the language of the F8Mind is denoted bl(A), for
short. The FSM {to}, 1,0, T,top, denoted MAX(I,0), where T =
{to} XIxOx{t o}, is called maximum over the input alphabdtand the output
alphabetD. The maximum machinklAX(I,0) accepts the languagkd). An
FSM B =(Q, 1,0, Tg, qo) is areduction of FSMA= (S 1, O, Ta, S, written
A<B, if Lg O La. If Lg=La then FSMsA andB areequivalent. For complete
deterministic FSMs the reduction and the equivaaetations coincide.

The common behavior of two FSMs can be describethdyntersection of
these machinesThe intersection A n B of FSMs A=(S, I, O, Ta, Sy and
B=(Q, 1,0, Tg,qoy is the largest connected sub-machine of the FSM
<SX Qa |1 01 TAnBy SOqo> Forma”ya TAnB = {(311 i1 o, Slql) | (51 i1 0, S') U
TalO(q,i, 0,9") O Tg}. The language ofA n B is the intersection.(A) n
L(B). The intersection of two observable FSMs is arseotable FSM;
however, the intersection of complete FSMs can dn¢igh. FSM languages
are regular, and thus, the underlying model foF&M is a finite automaton.
When solving a parallel equation an FSM is repriegskby an automaton by
unfolding each transition of the FSM [2 - 4].

Automata and FSMs: A finite automaton, is a quintuple S
=(SV, s, %, Fg), WhereSis a finite nonempty set of states with the initia
statesy, and a subsefs of final (or accepting) states,V is an alphabet of
actions, and ds0SxVxS is a transition relation. An automaton
(8,V, J's, Sy, F's) is asubmachine of the automato®if SO S J's0 ds, and
F'sO Fs. The automatoi® is deterministic, if 0 s Sand vV, O at most
one states', such thatgv,s") 0 Js The languagd (S generated or
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accepted by S is known to be regular. Given a sequent&@V and an
alphabeW, aW-restriction of a, written a ,, is obtained by deleting from

all symbols that belong to the ¢t W. Given a sequence 0V~ and an
alphabetW, a W-expansion of a, written a ,y, is a set that contains each
sequence over alphab#&t[l W) with theV—projectiona.

Well-known results state that regular languagesclrged under the union,
intersection, complementation, restriction and aspan and the constructions
for deriving corresponding automata could be fodadexample, in [1, 3, 6].
Let P=(P,V, Jdp, po, Fp) be an automaton which accepts the language
Restriction (,): Given a non-empty subsét of V, the automatorP, that
accepts the languadey overU is obtained by replacing each edga,€) in

P by the edges(g,s’).1 Expansion (;): Given alphabeU, the automatoi®,
that accepts the languagie, overU [ V is obtained by addings,g,s) [Ja
[J U\V for each states of P.

We note that not each automaton has an FSM langidmeever, it is
known that given an automatdd over alphabet 00 O, | n O = 0, there
exists a largest subset of the language of theraitmB that is the language
of an FSM, denote®™", which can be constructed by intersectBgvith
(10)* and deleting all non-accepting states from tlesutting automaton,
which have an incoming transition labeled with amtpot actiono. The
language of an FSIZ over inputl and outpuD is a subset of the language of
an automatom if and only ifC is a reduction oB™" [3].

Parallel Composition of FSMs. Consider a system of two complete
communicating FSMsA = (A, 1111V, O,00U, T, S andB = (T, I,0U, O,10V,
Ts, to) [1 - 3]. As usual, for the sake of simplicity, @ssume that alphabdis
V, Oy, U, I,, O, are pair-wise disjoint. The alphaliett;,, = 1, O |, represents
the external inputs of the composition, while thghabetExt,, 0 O, 00 O,
represents the external outputs of the composii®hs= Ext;, 0 Extyy, Int =
udV. The two FSMs communicate under a single messagansit, i.e., the
next external input is submitted to the system oafter it produced an
external output to the previous input. The collextbehavior of the two
communicating FSMs can be described by an FSM.pahallel composition
of FSMs A and B, denotedC 0g; B or simply C ¢ B, can be obtained as
follows [2, 3]: First, for FSMSA andB, the corresponding automadat(A)
and Aut(B) are derived. Then, the intersection

(Aut(A)HZDOZnAut(B)HlDOl)lExt n Aut(MAX(1,0)) is converted into an

FSM. It is known that the parallel composition wbtcomplete FSMs can be
partial, since the communicating FSMs can fall iatoinfinite dialogue (live-

1 Apply the closure procedure to obtain an equiviatieerministic automaton withoetmoves

(6].
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lock) without producing an external output. In tliase, the projection of

(Aut(A) , N Aut(B) ontol does not coincide with. Formally,

11200 Tl]_DOl)lEXt

the composition falls into live-lock M(A)nzuoz n Aut(B) n Au(MAX(1,0)

has a state where the generated language is empty.

FSM  Equations:. Let C=(C, L0V, OUU, Tgc,) and
S= (S BExtin, Exto, Ts, S,) be two complete FSMs. An expression
"COpq XOS' ("COgq X< S') is called anFSM equation (an FSM inequality)
w.r.t. the unknowiX that represents an FSM over the input alphghbetJ, I,
= Ext;\l;, and the output alphab&, [0 V, O, = Ext,\O;. The FSMC is
usually called theontext, and the FSM5 is usually called thepecification.

As usual, an FSM equation can have no solutioneaduil FSM inequality is
always solvable, as the trivial FSM with the langgidhat contains only the
empty sequence always is a solution to an FSM mlégu If an FSM
inequality and a solvable FSM equation have a cetaptolution then they
are known to have a largest complete solution J2,A3largest complete
solutionM to the equatiol€ Og X 0Scan be obtained as the largest complete
submachine of the FSM over input alphabglU and output alphab&d,[1V
which corresponds to the automaton A(C,SMAX) =

11400, tint

AAL(S), ) n  Aut(MAX(,0U,0,0V)), if such a

11500, 11900UIV
complete submachine exists. We note that in thfgepawe do not merge
equivalent states (for the reasons shown lateth@fautomatom\(C,SMAX)
when applying the closure procedure for derivingegnivalent deterministic
automaton withou¢-moves after the restriction operator. If such zmeeM
does not exist the equation and the inequality lreveomplete solutions. If
the machinev exists therM is a largest complete solution to the inequality
C O X< S Moreover, each reduction dfi also is a solution to the
inequality. If the compositiorC Ogx M is equivalent toS [2] thenM is a
largest complete solution to the equation. If tbenpositionC 0z M is not
equivalent toS, then the equation has no complete solution. Hewenot
each complete reduction bf is a solution to the equation.

As an example of a largest complete solution oF&M equation, consider
the specification FSMg, with transitions (1,03,1)(1j,01,1) (1X,0,,1) and the
contextC shown in Fig. 1. The contel is defined over external inpuks=
{i}, external output€O; = {0y, 0,, 0g}, internal inputsV = {v;, v,, va} and
internal outputdJ = {u;, uy}. SpecificationS is defined over external inputs
Ext;, = {i, X} and external outputExt,, = {01, 05, 03}. A solution to an FSM
equationC O X 0 S, is defined over the external input alphabet {x}, the
internal input alphabdt = {u;, u,} and the internal output alphabét= {vi,
Vy, V3}. A largest complete solution to the equationhiswsn in Fig. 2.

(At(C)
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u2/v1,v2,v3

ca/in

ulnv2,v3d x,ul,u2/v1,v2,v3

Fig. 1. Context FSMC Fig. 2. A largest complete solution @0g X 0 S

3. Progressive Solutionsto FSM Equations

Consider an FSM equatiog ¢ X OS, where C andS are FSMs over
input alphabet$;,[1V andl;1, and over output alphabe®[1U andO,[JO,
correspondingly, whil& is the unknown FSM over input alphabgfiU and
output alphabeO,[1V. A solutionProg to an FSM equatioil© ¢ XS (or
inequality) isprogressive if the systenC ¢ Prog cannot fall into a live-lock
under any external input sequence, i.e., for eatérmal input action of an
input sequence the composition eventually produmesexternal output.
Formally, a solutionProg to an FSM equatiol© ¢ X JS (or to inequality
COX<9 is progressive ifProg is a complete FSM and the intersection
AUt(C); 120102)N AUt(Prog); ji0o1yn Aut(MAX(1,0));uov has no states where the
empty language is generated. The definition ofcgmssive solution requires
that the above intersection has no cycles overniateactions without an exit
from the cycle with an external output. If we calesia deterministic context
FSM then each complete deterministic solution &édfuation is progressive.

As an example of a non-progressive solution, camsidlargest complete
FSM solutionLargest, shown in Fig. 2. At the initial states 1 of cot€
(Fig. 1) and H otLargest, if the external inpuitis applied to the context, FSM
Cproduces the internal output. In response to the input, the FSMLargest
may produce the outpuk, and then the systel@ ¢ Largest falls into a
livelock. This is due to the fact that states (B)Land (10,M,B) of the
intersection shown in Fig. 3 are non-progressiviee D-restriction of the
language generated at these states is empty.



PROGRESSIVE SOLUTIONSTO FSM EQUATIONS 7

Fig. 3. The intersectiorut(C), (21020 Aut(Largest), (1m0 N Aut(MAX(1,0)); upv

In the following, we identify a property of a sdbit Sol to an FSM
equation such that a largest progressive reducti@l can be derived as an
appropriate submachine 86l. In particular, the largest complete submachine
of an FSM corresponding to the automat®{C,SMAX) (without merging
equivalent states) possesses this property.

A solutionP = (P, 1,00U, OV, Tp, po) to an FSM inequalitf Ogq X< S
is calledperfect in the context C (or simplyperfect) if for each stateqp,to) of
the intersectiolAut(C); 12r102N AUL(P); j100yn Aut(MAX(1,0));unv that has an
incoming transition labeled with an actiend O,00V, the (;0O.,0JUOV)-
projection of the language accepted at stafgt{) equals to the set of I/O
sequences which take the F&Mrom the initial state to state

Given a solutiorF to the inequality, an equivalent perfect solutc@m be
obtained by splitting states &f[4]. However, if we do not merge equivalent
states when deriving the automatd(C,SMAX) then the largest complete
submachineM of an FSM corresponding to the automaton (if itsesy is
perfect w.r.t. the contex€. However, if the obtained FSM is not reduced
then the reduced form M does not generally possess the property.

Theorem 1: Given an FSM equatio@ ¢ X S (inequalityC ¢ X< 9, the
largest complete submachihk of an FSM corresponding to the automaton
NA(C,SMAX) (without merging equivalent states) is a perfadution (w.r.t.
the contexC) to the inequalityC Ogx X< S.

Theorem 2. Let P be a perfect solution (w.r.t. the conteg} to the
inequalityC ¢ X < S 1. Every complete submachiRg, of P is perfect. 2.
A complete intersection ¢f and some FSM is perfect.

Algorithm 1. Deriving a largest complete progressive solution to an
FSM equation (inequality)

Input: Observable FSME andS.

Output: A largest progressive solution @0 X LI S(if it exists).

Step-1. Derive the largest complete submachimé of the FSM
corresponding to the automatd(C,SMAX). If M does not exist dvl is not a
solution to the equation, then the equation hasemplete solution. End
Algorithm 1. Otherwise, construct the intersection
AUt(C)HgDog al AUt(M)THDOl N AUt(MAX(I,O))Hm and Go-to Step-2
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Step-2. If there is no triplet in the intersection whéhe language generated
at the triplet is empty and there is no acceptiiget (c,mt) where at least
one transition under an external input is undefinden Go-to Step-4.
Otherwise; Go-to Step-3.

Step-3. lteratively delete from the intersection evernplat (c,mt) where
the external restriction of language generatethatriplet is empty and each
accepting tripletd,m,t) where at least one transition under an extenaltiis
undefined.

- If the initial state of the intersection is deletbdn there is no progressive

solution. End Algorithm 1. Otherwise,
- For each deleted tripletc,(nt), delete statan from the FSMM and
iteratively delete fronM states where at least one input is undefined.
If the initial state oM is deleted then there is no progressive solufol
Algorithm 1. When a staten is deleted from the FSN¥I each triplet
(c,mt) is deleted from the intersection. If the initigtate of the
intersection is deleted then there is no progressomplete solution. End
Algorithm 1. Otherwise, Go-to Step-2.

Step-4. If CO M OSthenM is a largest progressive solution. End Algorithm

1. If CO M % Sthen there is no progressive solution. End AldonitL.

Theorem 3: If the equationC 0 XS has a progressive solution then
Algorithm 1 returns a largest progressive solution.

As an example, consider a largest solufibrshown in Fig. 2. In order to
derive a largest progressive solution to the eqoatat Step-2, derive the
intersection in Fig. 3. LeAut(F) denote the obtained intersection. State
(10,M,B) of Aut(F) is non-progressive, i.e., delete this state faaut(F) and
correspondingly delete statéfrom Aut(M). Furthermore, state (9,L,B) is also
non-progressive, i.e., delete this state from titeraaton and correspondingly
delete statd. from Aut(M). The remaining states of the obtained automaton
are all progressive. End Algorithm 1. The FSM cspanding to the resulting
automatonrAut(M) is a submachine of the FSM in Fig. 2 withoutestatand
this FSM is a largest complete progressive solutiathe equation.

4. A System of FSM Equations

Given an integek>1, complete context FSME; = (C;, 1,0V, O,00U,
Tai, C,p), SpecificationsS = (S;, Extin, Extow, Ts, S,p), K> 1, and a system
of equationsC; 0g¢ X0OS, 1 =1, ...,k. An FSM X over the input alphabet
Exti.\l; O U and over the output alphabéxt,,\O; O V is a solution to the
system if it is a solution to each equation, Qe XOS,i=1, ...,k
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If a system of FSM equations has a complete solutien the system has a
largest complete solution. A complete solutionh® $ystenC; g XUS, i =
1, ...,k is called alargest complete solution if it includes all complete
solutions as reductions. A largest complete satufid to a system of
equationC; 0gx X 0§ can be obtained similar to that in [5]. Given ateyn
of equationsC; 0g X0OS, i =1, ...,k a solutionB to the system is called
progressive if it is a progressive solution to every equatairthe system. In
general, the intersection of two largest progressmiutions to two equations
not necessary is a progressive solution to thesysf two equations.

Algorithm 2. Deriving a largest progressive solution to a system of FSM
equations

Input: Observable FSME,; andS;, i =1, ...k

Output: A largest progressive solution over the input algtl,[JU and
output alphabe®,l]V to the systenT; Ogx XS, 1 =1, ...k (if a progressive
solution exists).

Step-1: Fori =1, ..., k, call Algorithm 1 and obtain a largest progressive
solutionM; to the equatiorC; 0g¢ X OS. If for somei = 1, ...,k there is no
progressive solution to the equatiBie: X US, then there is no progressive
solution to the system of equations, End Algorithnklse; Go-to Step-2.

Step-2: Derive the largest complete submachinef the intersectiom M;.

If the intersection has no complete submaching) there is no progressive
solution to the system of equations, End Algorithnklse, Go-to Step-3.1.

Step-3.1) If F is a progressive solution to each equation, théma largest
progressive solution to the system of equations. Agorithm 2. Else, Go-to
Step-3.2.

Step-3.2) For everyj O 1, ...,k such thaf is not a progressive solution to
an equationC; 0g¢X 0O §, assignM = F, construct the intersection
AUt(C) 112002 N Aut(M); 11001 N Aut(MAX(1,0)). 1 and call Steps 2 and 3 of
Algorithm 1 in order to derive a largest completiersachine; of F that is a
progressive solution to the equation. If at leastdne equation there is no
such submachine then the system of equations hgsagpessive solution;
END Algorithm 2. Else, assigd;: = F; and Go-to Step-2.

Theorem 4: If a system of equation€; 0g¢ X0UOS, i =1, ...,k, has a
progressive solution then Algorithm 2 returns gést progressive solution.

As an example, consider the specificati®n [with (1,X,03,1)(1j,01,1)
(1.x,0,,1)] and the context; which is that of Fig. 1 where the output labgl
of the transition (9,0s,1) is changed too,. Moreover, consider the
specification S, with a single state 1 and transitions x(@s,1)(1},04,1)
(1.x,0s,1). Consider also, the conte®f shown in Fig. 4 and the system of two
equationsC; Ogqx X 0§ andC, 0 X [IS,. For each of these equations, at
Step-1 of Algorithm 2, apply Algorithm 1 and obtdime largest complete
progressive solution&P; and LP,. The intersection of these solutions is



10 Khaled El-Fakihl and Nina Y evtushenko2

shown in Fig. 5. The corresponding F&Ms not a progressive solution to the
equationC; 0g¢ X 0 S, since states (9,LS,B), (10,MW,B), and (9,LT,B) of
the intersection in Fig. 6 are non-progressive ré€mpondingly, in Step-3.2, in
order to derive a largest complete submachind- dhat is a progressive
solution to the equatio@; 0 X O S, derive the intersection in Fig. 6 and
apply Steps 2 and 3 of Algorithm 1. States (9,LS(B), MW,B) and (9,LT,B)
of the intersection are non-progressive, thus,tdedtates LS, MW, and LT
from Aut(F). The obtained automatdkut(F) is that of Fig. 5 without deleted
states LS, MW, and LT and its corresponding FSM tc®mplete progressive
solution to the system of two equations.

vi, v2, v3/01
12473 |

Fig. 4. ContextC,

Flg 6. The intersectioﬁ\ut(Cl)T(|2502) N AUt(F)T(”_DO]_) n AUt(MAX(l,O))“nt:UDV
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