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Abstract. The equation solving problem is to derive the behavior of the 
unknown component X knowing the joint behavior of the other components (or 
the context) C and the specification of the overall system S. The component X 
can be derived by solving the Finite State Machine (FSM) equation C ◊ X ∼ S, 
where ◊ is the parallel composition operator and ∼ is the trace equivalence or 
the trace reduction relation. A solution X to an FSM equation is called 
progressive if for every external input sequence the composition C ◊ X does not 
fall into a livelock without an exit. In this paper, we formally define the notion 
of a progressive solution to a parallel FSM equation and present an algorithm 
that derives a largest progressive solution (if a progressive solution exists). In 
addition, we generalize the work to a system of FSM equations. Application 
examples are provided. 

1. Introduction 

The equation solving problem can be formulated as solving an equation C ◊ 
X ∼ S, where ◊ is a composition operator and ∼ is a conformance relation. 
Usually the behavior of X, S, and A, is represented using finite state models 
such as finite state automata, I/O automata, Labeled Transition Systems 
(LTSs), and Finite Sate Machines (FSMs) [for references, see, for example, 1, 
2]. The conformance relation ∼ often is the trace equivalence relation, denoted 
≅, or the trace containment (or reduction) relation, denoted ≤, and the 
composition operator is either the synchronous • or the parallel ◊ composition 
operator. The applications of the equation solving problem were considered in 
the context of the design of communication protocols and protocol converters, 
selection of test cases, and the design of controllers for discrete event systems. 

If an equation has a solution, then it is known to have a largest solution that 
includes all other solutions [3].  However, not every solution of a largest 
solution is of a practical use. Usually, we are interested in so-called 
progressive solutions [3, 4] where for every external input sequence the 
composition C ◊ X does not fall into a livelock without an exit. If an automata 
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equation has a progressive solution then the equation is known to have a 
largest progressive solution [1] that contains all progressive solutions. 
However, not each solution of a largest progressive solution is progressive. 
The problem of deriving and characterizing progressive solutions has been 
studied for I/O automata, finite automata, and for FSMs over the synchronous 
composition operator.  

In the first part of this paper, we first, define the notion of a progressive 
solution for the FSM equation C ◊ X ≅ S and for the FSM inequality C ◊ X ≤ S 
[2, 3]. Given, possibly non-deterministic, FSMs context C and specification S, 
we present an algorithm that provides a largest complete progressive FSM 
solution to the equation C ◊ X ≅ S (inequality C ◊ X ≤ S) if the equation (the 
inequality) has a progressive solution. A largest progressive solution is 
derived by trimming a proper largest solution. We note that the results [2] 
obtained for deriving a progressive solution in the area of finite automata 
cannot be directly applied for deriving a progressive solution over FSMs, 
since, by definition, a progressive solution to an FSM equation can block 
output actions allowed by the specification. Moreover, in this paper, we 
propose a simpler algorithm for deriving a largest progressive solution than 
that for automata equations [1]. In addition, the results obtained for deriving a 
progressive solution of an FSM equation over the synchronous composition 
operator [4] cannot be directly applied for deriving a progressive solution over 
the parallel composition operator, since the notions of the parallel and 
synchronous composition operators are different; the parallel composition 
operator allows to produce an external output not directly after external input 
but, possibly after a sequence of internal actions.  

In some application areas, given a finite set of k > 1 contexts C i  and service 
specifications S i , one is interested in finding a solution (the unknown 
component) X that combined with Ci meets the specification Si, for i = 1, ..., k. 
The problem of finding such a solution X is the problem of solving a system of 
equations. A largest solution to a system of FSM equations can be derived as 
given in [5]. In the second part of this paper, we deal with a progressive 
solution to a system of FSM equations. A largest progressive solution to the 
system of equations is derived by intersecting largest progressive solutions of 
every equation and then by deriving the largest submachine of this 
intersection that is progressive for every equation.  

2. Preliminaries 

Finite State Machine (FSMs): A FSM, or machine hereafter, is a quintuple 
A = 〈S, I, O,TA, s0〉, where S is a finite nonempty set of states with the initial 
state s0, I and O are input and output alphabets, and TA ⊆ S ×I ×O× S is a 
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transition relation. In this paper, we consider only observable FSMs, i.e. for 
each triple (s,i,o)∈S×I×O there exists at most one state n∈S such that 
(s,i,n,o)∈T. An FSM A is called complete, if ∀s ∈ S and ∀i ∈ I ∃o∈O and 
∃s '∈ S, such that (s, i,o, s ')∈TA. If A is not complete, then it is called partial. 
An FSM A is called deterministic, if ∀ s ∈ S and ∀ i∈I there exist at most one 
pair of output o and state s ', such that (s, i,o, s ')∈TA. An FSM 
B = (Q ,I ,O,TB,q0) is a sub-machine of A if Q ⊆ S  and TB ⊆ TA. The 
largest complete submachine of FSM A can be obtained by iterative deleting 
states where the behavior of the FSM is not defined at least for a single input. 
Each complete sub-machine of A is a submachine of the largest complete sub-
machine of A (if it exists). As usual, the transition relation TA of FSM A = 
〈S, I, O,TA, s0〉 can be extended to sequences over the alphabet I. In this paper, 
we consider only initially connected FSMs, i.e., each state of an FSM is 
reachable from the initial state. 

Given an FSM A, the set of all I/O sequences generated at state s of A is 
called the language of A generated at state s, or simply the set of I/O 
sequences at s, written Ls(A). The language, generated by the FSM A at the 
initial state is called the language of the FSM A and is denoted by L(A), for 
short. The FSM 〈{ t 0}, I, O, T, t 0〉, denoted MAX(I,O), where T = 
{ t0} ×I×O×{ t 0}, is called maximum over the input alphabet I and the output 
alphabet O. The maximum machine MAX(I,O) accepts the language (IO)*. An 
FSM B = 〈Q, I, O, TB, q0〉 is a reduction of FSM A = 〈S, I, O, TA , s0〉, written 
A ≤ B, if LB ⊆ LA. If LB = LA then FSMs A and B are equivalent. For complete 
deterministic FSMs the reduction and the equivalence relations coincide.  

The common behavior of two FSMs can be described by the intersection of 
these machines. The intersection A ∩ B of FSMs A=〈S, I, O, TA, s0〉 and 
B=〈Q, I, O, TB, q0〉 is the largest connected sub-machine of the FSM 
〈S × Q, I, O, TA ∩B, s0q0〉. Formally, TA ∩B  = {(sq, i, o, s'q') | (s, i, o, s ') ∈ 
TA ∧ (q, i, o, q ') ∈ TB}. The language of A ∩ B is the intersection L(A) ∩ 
L(B). The intersection of two observable FSMs is an observable FSM; 
however, the intersection of complete FSMs can be partial. FSM languages 
are regular, and thus, the underlying model for an FSM is a finite automaton. 
When solving a parallel equation an FSM is represented by an automaton by 
unfolding each transition of the FSM [2 - 4]. 

 Automata and FSMs: A finite automaton, is a quintuple S 
= 〈S, V, δ S, s0, FS〉, where S is a finite nonempty set of states with the initial 
state s0 and a subset FS of final (or accepting) states, V is an alphabet of 
actions, and δ S ⊆ S ×V × S is a transition relation. An automaton 
〈S', V, δ 'S, s'0, F'S〉 is a submachine of the automaton S if S' ⊆ S, δ 'S ⊆ δ S, and 
F'S ⊆ FS. The automaton S is deterministic, if ∀ s ∈ S and ∀ v∈V, ∃ at most 
one state s ', such that (s, v, s ') ∈ δ S. The language L(S) generated or 
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accepted by S is known to be regular. Given a sequence α ∈V * and an 
alphabet W, a W-restriction of α, written α ↓W, is obtained by deleting from α 
all symbols that belong to the set V \ W. Given a sequence α ∈V * and an 
alphabet W, a W-expansion of α, written α ↑W, is a set that contains each 
sequence over alphabet (V ∪ W) with the V–projection α.  

Well-known results state that regular languages are closed under the union, 
intersection, complementation, restriction and expansion and the constructions 
for deriving corresponding automata could be found, for example, in [1, 3, 6]. 
Let P = 〈P, V, δ P, p 0, FP〉 be an automaton which accepts the language L. 
Restriction (↓): Given a non-empty subset U of V, the automaton P↓U  that 
accepts the language L↓U  over U is obtained by replacing each edge (s,a,s′) in 

P by the edge (s,ε,s′).1 Expansion (↑): Given alphabet U, the automaton P↑U 
that accepts the language L↑U  over U ∪ V is obtained by adding (s,a,s) ∀a 
∈ U\V for each state s of P. 

We note that not each automaton has an FSM language. However, it is 
known that given an automaton B over alphabet I ∪ O, I ∩ O = ∅, there 
exists a largest subset of the language of the automaton B that is the language 
of an FSM, denoted BFSM, which can be constructed by intersecting B with 
(IO)* and deleting all non-accepting states from the resulting automaton, 
which have an incoming transition labeled with an output action o. The 
language of an FSM C over input I and output O is a subset of the language of 
an automaton B if and only if C is a reduction of BFSM [3]. 

Parallel Composition of FSMs: Consider a system of two complete 
communicating FSMs  A = 〈A, I1∪V, O1∪U, TA, s0〉 and B = 〈T, I2∪U, O2∪V, 
TB, t0〉 [1 - 3]. As usual, for the sake of simplicity, we assume that alphabets I1, 
V, O1, U, I2, O2 are pair-wise disjoint. The alphabet Extin = I1 ∪ I2 represents 
the external inputs of the composition, while the alphabet Extout ⊆ O1 ∪ O2 
represents the external outputs of the composition; Ext = Extin ∪ Extout,  Int = 
U∪V. The two FSMs communicate under a single message in transit, i.e., the 
next external input is submitted to the system only after it produced an 
external output to the previous input. The collective behavior of the two 
communicating FSMs can be described by an FSM. The parallel composition 
of FSMs A and B, denoted C ◊Ext B or simply C ◊ B, can be obtained as 
follows [2, 3]: First, for FSMS A and B, the corresponding automata Aut(A) 
and Aut(B) are derived. Then, the intersection 

2 2 1 1
( ( ) ( ) )

I O I O Ext
Aut A Aut B↑ ∪ ↑ ∪ ↓∩  ∩ Aut(MAX(I,O)) is converted into an 

FSM. It is known that the parallel composition of two complete FSMs can be 
partial, since the communicating FSMs can fall into an infinite dialogue (live-
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[6]. 
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lock) without producing an external output. In this case, the projection of 

2 2 1 1
( ( ) ( ) )

I O I O Ext
Aut A Aut B↑ ∪ ↑ ∪ ↓∩  onto I does not coincide with I*. Formally, 

the composition falls into live-lock if 
2 2 1 1

( ) ( ) ( ( , )
I O I O Int

Aut A Aut B Aut MAX I O↑ ∪ ↑ ∪ ↑∩ ∩  

has a state where the generated language is empty. 
FSM Equations: Let C = (C ,  I1∪V, O1∪U, TC,  c0) and 

S = (S ,  Extin,  Extout,  TS,  s0) be two complete FSMs. An expression 

"C ◊Ext X ≅ S" ("C ◊Ext X ≤ S") is called an FSM equation (an FSM inequality) 
w.r.t. the unknown X that represents an FSM over the input alphabet I2 ∪ U, I2 

= Extin\I1, and the output alphabet O2 ∪ V, O2 = Extout\O1. The FSM C is 
usually called the context, and the FSM S is usually called the specification. 
As usual, an FSM equation can have no solution while an FSM inequality is 
always solvable, as the trivial FSM with the language that contains only the 
empty sequence always is a solution to an FSM inequality. If an FSM 
inequality and a solvable FSM equation have a complete solution then they 
are known to have a largest complete solution [2, 3]. A largest complete 
solution M to the equation C ◊Ext X ≅ S can be obtained as the largest complete 
submachine of the FSM over input alphabet I2∪U and output alphabet O2∪V 
which corresponds to the automaton Λ(C,S,MAX) = 

2 2 2 2
( ( ) ( ) )U VI O I O U V
Aut C Aut S ↑ ∪↑ ∪ ↓ ∪ ∪ ∪

∩ ∩ Aut(MAX(I2∪U,O2∪V)), if such a 

complete submachine exists. We note that in this paper, we do not merge 
equivalent states (for the reasons shown later) of the automaton Λ(C,S,MAX) 
when applying the closure procedure for deriving an equivalent deterministic 
automaton without ε-moves after the restriction operator. If such a machine M 
does not exist the equation and the inequality have no complete solutions. If 
the machine M exists then M is a largest complete solution to the inequality 
C ◊Ext X ≤ S. Moreover, each reduction of M also is a solution to the 
inequality. If the composition C ◊Ext M is equivalent to S [2] then M is a 
largest complete solution to the equation. If the composition C ◊Ext M is not 
equivalent to S, then the equation has no complete solution. However, not 
each complete reduction of M is a solution to the equation. 

As an example of a largest complete solution of an FSM equation, consider 
the specification FSM S1 with transitions (1,x,o3,1)(1,i,o1,1) (1,x,o2,1) and the 
context C shown in Fig. 1. The context C is defined over external inputs I1 = 
{ i}, external outputs O1 = {o1, o2, o3}, internal inputs V = {v1, v2, v3} and 
internal outputs U = {u1, u2}. Specification S1 is defined over external inputs 
Extin = {i, x} and external outputs Extout = {o1, o2, o3}. A solution to an FSM 
equation C ◊Ext X ≅  S1 is defined over the external input alphabet I2 = {x}, the 
internal input alphabet U = {u1, u2} and the internal output alphabet V = {v1, 
v2, v3}. A largest complete solution to the equation is shown in Fig. 2. 
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Fig. 1. Context FSM C 

 

Fig. 2. A largest complete solution to C ◊Ext X ≅  S1 

3. Progressive Solutions to FSM Equations 

Consider an FSM equation C ◊ X ≅ S, where C and S are FSMs over 
input alphabets I1∪V and I1∪I2 and over output alphabets O1∪U and O1∪O2 
correspondingly, while X is the unknown FSM over input alphabet I2∪U and 
output alphabet O2∪V. A solution Prog to an FSM equation C ◊ X ≅ S (or 
inequality) is progressive if the system C ◊ Prog cannot fall into a live-lock 
under any external input sequence, i.e., for each external input action of an 
input sequence the composition eventually produces an external output. 
Formally, a solution Prog to an FSM equation C ◊ X ≅ S (or to inequality 
C ◊ X ≤ S) is progressive if Prog is a complete FSM and the intersection 
Aut(C)↑(I2∪O2)∩Aut(Prog)↑(I1∪O1)∩ Aut(MAX(I,O))↑U∪V has no states where the 
empty language is generated. The definition of a progressive solution requires 
that the above intersection has no cycles over internal actions without an exit 
from the cycle with an external output. If we consider a deterministic context 
FSM then each complete deterministic solution to the equation is progressive.  

As an example of a non-progressive solution, consider a largest complete 
FSM solution Largest, shown in Fig. 2. At the initial states 1 of context C 
(Fig. 1) and H of Largest, if the external input i is applied to the context, FSM 
C produces the internal output u1. In response to the input u1, the FSM Largest 
may produce the output v3, and then the system C ◊ Largest falls into a 
livelock. This is due to the fact that states (9,L,B) and (10,M,B) of the 
intersection shown in Fig. 3 are non-progressive. The O-restriction of the 
language generated at these states is empty. 
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Fig. 3. The intersection Aut(C)↑(I2∪O2)∩Aut(Largest)↑(I1∪O1)∩Aut(MAX(I,O))↑U∪V 

In the following, we identify a property of a solution Sol to an FSM 
equation such that a largest progressive reduction of Sol can be derived as an 
appropriate submachine of Sol. In particular, the largest complete submachine 
of an FSM corresponding to the automaton Λ(C,S,MAX) (without merging 
equivalent states) possesses this property. 

A solution P = (P ,  I2∪U, O2∪V, TP,   p0) to an FSM inequality C ◊Ext X ≤ S 
is called perfect in the context C (or simply perfect) if for each state (c,p,t0) of 
the intersection Aut(C)↑(I2∪O2)∩Aut(P)↑(I1∪O1)∩ Aut(MAX(I,O))↑U∪V that has an 
incoming transition labeled with an action a ∈ O2∪V, the (I2∪O2∪U∪V)-
projection of the language accepted at state (c,p,t0) equals to the set of I/O 
sequences which take the FSM P from the initial state to state p.  

Given a solution F to the inequality, an equivalent perfect solution can be 
obtained by splitting states of F [4]. However, if we do not merge equivalent 
states when deriving the automaton Λ(C,S,MAX) then the largest complete 
submachine M of an FSM corresponding to the automaton (if it exists) is 
perfect w.r.t. the context C. However, if the obtained FSM M is not reduced 
then the reduced form of M does not generally possess the property.  

Theorem 1: Given an FSM equation C ◊ X ≅ S (inequality C ◊ X ≤  S), the 
largest complete submachine M of an FSM corresponding to the automaton 
Λ(C,S,MAX) (without merging equivalent states) is a perfect solution (w.r.t. 
the context C) to the  inequality C ◊Ext X ≤ S. �  

Theorem 2: Let P be a perfect solution (w.r.t. the context C) to the 
inequality C ◊ X  ≤  S. 1. Every complete submachine Psub of P is perfect. 2. 
A complete intersection of P and some FSM is perfect.  �  

Algorithm 1. Deriving a largest complete progressive solution to an 
FSM equation (inequality) 

Input: Observable FSMs C and S .  
Output: A largest progressive solution to C ◊ X ≅ S (if it exists). 
Step-1. Derive the largest complete submachine M of the FSM 

corresponding to the automaton Λ(C,S,MAX). If M does not exist or M is not a 
solution to the equation, then the equation has no complete solution. End 
Algorithm 1. Otherwise, construct the intersection 
Aut(C)↑I2∪O2 ∩ Aut(M)↑I1∪O1 ∩  Aut(MAX(I,O))↑Int  and Go-to Step-2. 
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Step-2. If there is no triplet in the intersection where the language generated 
at the triplet is empty and there is no accepting triplet (c,m,t) where at least 
one transition under an external input is undefined, then Go-to Step-4. 
Otherwise; Go-to Step-3. 

Step-3. Iteratively delete from the intersection every triplet (c,m,t) where 
the external restriction of language generated at the triplet is empty and each 
accepting triplet (c,m,t) where at least one transition under an external input is 
undefined.  

- If the initial state of the intersection is deleted then there is no progressive 
solution. End Algorithm 1. Otherwise,  

- For each deleted triplet (c,m,t), delete state m from the FSM M and 
iteratively delete from M states where at least one input is undefined.  

   If the initial state of M is deleted then there is no progressive solution. End 
Algorithm 1. When a state m is deleted from the FSM M each triplet 
(c,m,t) is deleted from the intersection. If the initial state of the 
intersection is deleted then there is no progressive complete solution. End 
Algorithm 1. Otherwise, Go-to Step-2. 

Step-4. If C ◊ M ≅ S then M is a largest progressive solution. End Algorithm 

1. If C ◊ M � S then there is no progressive solution. End Algorithm 1. �  
Theorem 3: If the equation C ◊ X ≅ S has a progressive solution then 

Algorithm 1 returns a largest progressive solution. �  
As an example, consider a largest solution M shown in Fig. 2. In order to 

derive a largest progressive solution to the equation, at Step-2, derive the 
intersection in Fig. 3. Let Aut(F) denote the obtained intersection. State 
(10,M,B) of Aut(F) is non-progressive, i.e., delete this state from Aut(F) and 
correspondingly delete state M from Aut(M). Furthermore, state (9,L,B) is also 
non-progressive, i.e., delete this state from the automaton and correspondingly 
delete state L from Aut(M). The remaining states of the obtained automaton 
are all progressive. End Algorithm 1. The FSM corresponding to the resulting 
automaton Aut(M) is a submachine of the FSM in Fig. 2 without state L, and 
this FSM is a largest complete progressive solution to the equation. 

4. A System of FSM Equations 

Given an integer k>1, complete context FSMs C i  = (C i ,  I1∪V, O1∪U, 
TCi,  c i 0), specifications S i  = (S i ,  Extin,  Extout,  TSi ,  s i 0), k > 1, and a system 

of equations Ci ◊Ext  X ≅ Si, i = 1, ..., k. An FSM X over the input alphabet 
Extin\I1 ∪ U and over the output alphabet Extout\O1 ∪ V is a solution to the 
system if it is a solution to each equation, i.e., Ci ◊Ext  X ≅ Si, i = 1, ..., k. 
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If a system of FSM equations has a complete solution then the system has a 
largest complete solution. A complete solution to the system Ci ◊Ext  X ≅ Si, i = 
1, ..., k, is called a largest complete solution if it includes all complete 
solutions as reductions. A largest complete solution M to a system of 
equations Ci ◊Ext  X ≅ Si can be obtained similar to that in [5]. Given a system 
of equations Ci ◊Ext  X ≅ Si, i = 1, ..., k, a solution B to the system is called 
progressive if it is a progressive solution to every equation of the system. In 
general, the intersection of two largest progressive solutions to two equations 
not necessary is a progressive solution to the system of two equations.  

Algorithm 2. Deriving a largest progressive solution to a system of FSM 
equations 

Input: Observable FSMs C i  and S i ,  i = 1, ..., k. 
Output: A largest progressive solution over the input alphabet I2∪U and 

output alphabet O2∪V to the system Ci ◊Ext  X ≅ Si, i = 1, ...,k (if  a progressive 
solution exists). 

Step-1: For i = 1, …, k, call Algorithm 1 and obtain a largest progressive 
solution Mi to the equation Ci ◊Ext  X ≅ Si. If for some i = 1, ..., k, there is no 
progressive solution to the equation Ci ◊Ext  X ≅ Si, then there is no progressive 
solution to the system of equations, End Algorithm 2. Else; Go-to Step-2. 

Step-2: Derive the largest complete submachine F of the intersection ∩ Mi. 
If the intersection has no complete submachine, then there is no progressive 
solution to the system of equations, End Algorithm 2. Else, Go-to Step-3.1. 

Step-3.1) If F is a progressive solution to each equation, then F is a largest 
progressive solution to the system of equations. End Algorithm 2. Else, Go-to 
Step-3.2. 

Step-3.2) For every j ∈ 1, ..., k such that F is not a progressive solution to 
an equation Cj ◊Ext X  ≅ Sj, assign M = F, construct the intersection 
Aut(Cj)↑I2∪O2 ∩ Aut(M)↑I1∪O1 ∩  Aut(MAX(I,O))↑Int and call Steps 2 and 3 of 
Algorithm 1 in order to derive a largest complete submachine Fj of F that is a 
progressive solution to the equation. If at least for one equation there is no 
such submachine then the system of equations has no progressive solution; 
END Algorithm 2. Else, assign Mj: = Fj and Go-to Step-2. �  

Theorem 4: If a system of equations Ci ◊Ext  X ≅ Si, i = 1, ..., k, has a 
progressive solution then Algorithm 2 returns a largest progressive solution. �   

As an example, consider the specification S1 [with (1,x,o3,1)(1,i,o1,1) 
(1,x,o2,1)] and the context C1 which is that of Fig. 1 where the output label o3 
of the transition (9,v1,o3,1) is changed to o1. Moreover, consider the 
specification S2 with a single state 1 and transitions (1,x,o3,1)(1,i,o1,1) 
(1,x,o3,1). Consider also, the context C2 shown in Fig. 4 and the system of two 
equations C1 ◊Ext  X  ≅ S1 and C2 ◊Ext  X ≅ S2. For each of these equations, at 
Step-1 of Algorithm 2, apply Algorithm 1 and obtain the largest complete 
progressive solutions LP1 and LP2. The intersection of these solutions is 
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shown in Fig. 5. The corresponding FSM F is not a progressive solution to the 
equation C1 ◊Ext X  ≅ S1, since states (9,LS,B), (10,MW,B), and (9,LT,B) of 
the intersection in Fig. 6 are non-progressive. Correspondingly, in Step-3.2, in 
order to derive a largest complete submachine of F that is a progressive 
solution to the equation C1 ◊Ext  X  ≅ S1, derive the intersection in Fig. 6 and 
apply Steps 2 and 3 of Algorithm 1. States (9,LS,B), (10,MW,B) and (9,LT,B) 
of the intersection are non-progressive, thus, delete states LS, MW, and LT 
from Aut(F). The obtained automaton Aut(F) is that of Fig. 5 without deleted 
states LS, MW, and LT and its corresponding FSM is a complete progressive 
solution to the system of two equations.  

 
Fig. 4. Context C2 

 
Fig. 5. The intersection Aut(F) 

 
Fig. 6. The intersection Aut(C1)↑(I2∪O2)  ∩ Aut(F)↑(I1∪O1) ∩ Aut(MAX(I,O))↑Int=U∪V 
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